Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSM‐5 as Revealed by Operando X‐Ray Methods

نویسندگان

  • Inés Lezcano-González
  • Ramon Oord
  • Mauro Rovezzi
  • Pieter Glatzel
  • Stanley W Botchway
  • Bert M Weckhuysen
  • Andrew M Beale
چکیده

Combined high-resolution fluorescence detection X-ray absorption near-edge spectroscopy, X-ray diffraction, and X-ray emission spectroscopy have been employed under operando conditions to obtain detailed new insight into the nature of the Mo species on zeolite ZSM-5 during methane dehydroaromatization. The results show that isolated Mo-oxo species present after calcination are converted by CH4 into metastable MoCx Oy species, which are primarily responsible for C2 Hx /C3 Hx formation. Further carburization leads to MoC3 clusters, whose presence coincides with benzene formation. Both sintering of MoC3 and accumulation of large hydrocarbons on the external surface, evidenced by fluorescence-lifetime imaging microscopy, are principally responsible for the decrease in catalytic performance. These results show the importance of controlling Mo speciation to achieve the desired product formation, which has important implications for realizing the impact of CH4 as a source for platform chemicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM‐5

Non-oxidative dehydroaromatization of methane (MDA) is a promising catalytic process for direct valorization of natural gas to liquid hydrocarbons. The application of this reaction in practical technology is hindered by a lack of understanding about the mechanism and nature of the active sites in benchmark zeolite-based Mo/ZSM-5 catalysts, which precludes the solution of problems such as rapid ...

متن کامل

Effects of Coke Deposits on the Catalytic Performance of Large Zeolite H-ZSM-5 Crystals during Alcohol-to-Hydrocarbon Reactions as Investigated by a Combination of Optical Spectroscopy and Microscopy.

The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ single crystal UV/Vis and confocal fluorescence micro-spectroscopy, allowing the observation of the s...

متن کامل

Designing Metal-exchanged Zeolites for Non-oxidative Methane Upgrade to Chemicals

Utilization of methane to produce chemicals has become attractive due to significantly reduced prices for methane gained from recent development in natural gas recovery. However, the lack of suitable catalysts for methane conversion (other than steam reforming) hinders its advances. While intensive research has been conducted on oxidative methane upgrading over decades, the carbon selectivity a...

متن کامل

Selective Coke Combustion by Oxygen Pulsing During Mo/ZSM‐5‐Catalyzed Methane Dehydroaromatization

Non-oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation of coke during methane dehydroaromatization at 700 °C. Periodic pulsing of oxygen into the methane...

متن کامل

Non-oxidative conversion of methane to aromatics over modified zeolite catalysts by transitional metals

The activity of different transitional metals over modified H-ZSM-5 catalysts for methane conversion to aromatics was compared. The first group of catalysts was Mo-impregnated H-ZSM-5 zeolites with 1, 3 and 6 wt% of Mo. The second group was M(3 wt%)- impregnated H-ZSM-5 (M: Ag, Cd, Cr, Mo, Zn and Mn). The catalytic activity of the first group was investigated at 600, 700 and 800 °C and gas hour...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2016